Пусть r отношение на множестве. Бинарные отношения и их свойства. Отношение частичного порядка

Понятие отношения наряду с понятием множества «пронизывает» всю математику. Интуитивно отношение понимается как связь объектов. Наша задача заключается в том, чтобы, используя сформулированные выше конструкции теории множеств, определить на математическом языке, что же понимается в математике под термином «отношение».

Бинарные отношения на множестве

Пусть дано множество А. Связь элементов хну множества А моделируется парой (ду>). Если элемент х связан с у, значит, мы имеем пару (л:,у) в качестве элемента некоторого множества; если д; не связан с у , значит, пара (л:^) не является объектом множества. Итак, имеем следующее определение.

Бинарным отношением на множестве А называется произвольное множество пар элементов из А.

Другими словами, бинарное отношение на множестве А - ото подмножество прямого произведения АхА=А 2 . В частности, само множество А 2 всех пар является бинарным отношением.

По аналогии с бинарным (или двуместным) отношением можно рассматривать п-местное отношение на множестве как подмножество прямого произведения А". Мы в основном будем рассматривать бинарные отношения, но для краткости речи говорить просто: «отношение на множестве А».

Обозначим произвольное бинарное отношение греческой буквой р.

Если (л",у)е р, то говорят, что л" находится в отношении р с у, и пишут

Если (ду)?Р> то имеем отрицание соответствующего утверждения. В этом случае наряду с записью ~|(хру) (или хру) пишут д-ру, перечеркивая знак отношения.

Пример 8.1.1. Рассмотрим множество А = {1,2,3,4,5}. Множество пар

определяет на А отношение «меньше», обозначаемое знаком <.>

11а этом же множестве можно рассмотреть другое множество пар

оно определяет отношение равенства.

Пример 8.1.2. Рассмотрим множество {N, Z, Q, I, R} основных числовых множеств и множество пар

Имеем отношение, определенное нами в пункте 2.2 как отношение строгого включения множеств. Заметим, что, например, пара (Q. I) нс лежит в указанном множестве, так как Qczl, более того, эти множества не пересекаются.

Пример 8.1.3. Дано множество слов Л={ток, кот, шок, кол, лак}. Рассмотрим такое отношение:

р = {(ток, шок), (шок, ток), (шок, кол), (кол, шок),

(кол, лак), (лак, кол), (кот, кол), (кол, кот)}.

Это отношение можно выразить таким образом: слова множества А находятся в отношении р тогда и только тогда, когда они имеют ровно две одинаковые буквы.

Заметим, что любое множество пар является отношением, неважно, имеется ли для этого отношения хорошее словесное описание.

Так как отношение является множеством, то его можно задать характеристическим свойством, то сеть предикатом Р(ху): р = {(.*,>>) еЛ 2 Р(ху)}. Также используется запись:

Читают: «г находится в отношении с у тогда и только тогда, когда истинно Р(ху)».

Пример 8.1.4. Определим на множестве/! = {1,2,3,4,5} отношение:

Здесь Р(ху) = (л+2=у). Зададим это отношение перечислением пар:

Пример 8.1.5. Зададим на множестве Z (или на множестве N) отношение с помощью предложения: «Существует целое число /?, такое, что х=п у». Символически можно записать:

Имеем уже определенное ранее отношение делимости, обозначаемое знаком:. Этому отношению принадлежат такие пары, как (6,2), (6,3), (4,4), (111, -37) и другие. В отличие от предыдущих примеров это множество пар бесконечно, и перечислить все пары не удастся.

Рассмотрим важнейшие свойства, которыми могут обладать бинарные отношения на множестве.

Отношение р на множестве А называется рефлексивным , если любой элемент х из А находится в отношении р сам с собой, то есть для всех д; из А выполняется лрт:

Пример 8.1.6. Рассмотрим отношение делимости на множестве Z. Возьмем произвольное целое число х. Так как х=х 9 то х‘:х. Значит, любое целое число делится на само себя: V.veZ (л:л). Поэтому отношение делимости рефлексивно.

Так как любое множество является подмножеством самого себя, то отношение включения множеств рефлексивно (на любой совокупности множеств).

Отношение р на множестве А называется аитирефлексивным , если ни один элемент множества А не находится в отношении р с самим собой:

Пример 8.1.7. R антирефлексивно, так как никакое число не меньше самого себя.

Построим отрицание к предложению «Отношение р рефлексивно»:

Таким образом, отношение р не является рефлексивным тогда и только тогда, когда существует элемент хеА, который не находится в отношении р сам с собой. Отношение, не являющееся рефлексивным, не обязано быть аитирефлексивным.

Пример 8.1.8. Рассмотрим отношение на множестве R, заданное предложением «Число х противоположно числу у». Число х называется противоположным числу у, если сумма х+у равна 0.

Это отношение не рефлексивно. Контрпример: х=1. Так как 1 + 1*0, то число 1 не противоположно 1.

Это отношение нс антирефлексивно. Контрпример: ,v=0. Так как 0+0=0, то число 0 противоположно 0.

Отношение р на множестве А называется симметричным , если из того, что х находится в отношении р с у, следует, что у находится в отношении р с

Пример 8.1.9. Из тождества х+у=у+.х вытекает утверждение: для любых действительных чисел х и у если х противоположно v, то у противоположно х. Значит, данное отношение симметрично. Часто говорят просто: «Числа х и у противоположны».

Отношение «Число х меньше числа у» на множестве R не является симметричным: 3 меньше 4, но 4 не меньше 3.

Отношение р на множестве А называется антисимметричным , если ни для каких различных элементов х и у из А, таких, что хру, не выполняется

урх:

Пример 8.1.10. Отношение «меньше» на множестве R антисимметрично.

Определение антисимметричного отношения можно сформулировать другими способами. Введем обозначения:

Используя таблицу истинности, можно доказать, что формула 1Р л М -равносильна формуле М л К -> Р, которая, в свою очередь, по правилу контрапозиции равносильна 1Р ->~|(Л/ л К). На основании этого можно сказать, что отношение р является антисимметричным тогда и только тогда, когда выполняется одно из равносильных условий:

А) Из того, что хру и урх, следует х=у:

Б) Никакие различные элементы не могут одновременно находиться в отношении р друг с другом.

Пример 8.1.11. Рассмотрим отношение включения на произвольном семействе множеств. Так как ЛсУл Y^X=>X=Y, то включение е есть антисимметричное отношение.

Пример 8.1.12. Отношение делимости на множестве Z не является ни симметричным, ни антисимметричным. Так как 4:2, но 2?4, то отношение не симметрично. Так как 2:(-2) и (-2):2, но (-2)^2, то отношение не является антисимметричным.

Однако на множестве N натуральных чисел имеем антисимметричное отношение: Vjt^eN (х:у лу:х ->х=у). Проверьте это утверждение, пользуясь определением делимости.

Отношение р на множестве А называется транзитивным , если из того, что х находится в отношении р с у, а у находится в отношении р с z, следует, что.V находится в отношении р с z:

Пример 8.1.13. Отношение делимости транзитивно (и на множестве Z и на множестве N): х:у л у: z => x:z. Покажем это. Пусть х:у и y:z. Тогда х=пу и y=kz для некоторых целых чисел п и к. Тогда х = n(kz) = (nk)z = mz, где т есть целое число. Поэтому xz.

Отношение включения множеств также транзитивно: XcY л YcZ => XezZ. Докажите.

Отношение «Числа х и у противоположны» не является транзитивным. Контрпример: х=2,у=-2, 2=2. Тогда числа 2 и (-2) противоположны, а также (-2) и 2 противоположны. Но числа х=2 и z=2 нс являются противоположными.

Пример 8.1.14. Рассмотрим некоторые примеры отношений из предыдущего пункта.

Отношение из примера 8.1.3 антирефлексивно и симметрично. Отношение из примера 8.1.4 антирефлексивно и антисимметрично. Ни одно из этих отношений нс транзитивно. Докажите это, рассмотрев соответствующие контрпримеры.

Некоторым отношениям, обладающим одновременно рядом свойств, даны общие называния. Из рассмотренных выше примеров одновременно свойствами рефлексивности, антисиммегричности и транзитивности обладают отношение включения множеств с и отношение делимости на множестве N. Также этими тремя свойствами обладает отношение «х меньше либо равно у », определенное на множестве R (или на любом его подмножестве):

Рефлексивное, антисимметричное и транзитивное отношение называется отношением порядка.

Множество А , на котором задано отношение порядка р, называется упорядоченным множеством . Пишут (А, р).

В настоящее время теория упорядоченных множеств - это большой раздел математики, которому посвящены целые книги. Мы отметим лишь ряд особенностей понятия «упорядоченное множество».

Интуитивно слова «упорядоченное множество» часто понимаются в более узком смысле. Рассмотрим упорядоченную л-ку, составленную из попарно различных элементов. Например, пятерка букв (III,К,О,Л,А) определяет слово ШКОЛА. В этом случае слова «элементы записаны в определенном порядке» понимаются в том смысле, что мы занумеровали их натуральными числами 1, 2, 3, 4, 5 и расположили в порядке возрастания номеров. Обобщим этот пример.

Пусть дано «-элементное множество А. Занумеровав каким-то образом ею элементы а, а 2 >а„, мы действительно получим упорядоченное множество, определив отношение порядка следующим образом:

Соотношение понимается так: то, что элемент х связан с другим элементом у, означает, что х записан в кортеже левее у.

Пример 8.1.15. Дано множество /4={а,б.в,г}. Упорядоченная четверка его различных элементов (б,в,а,г) задаст такое отношение порядка:

{(б,б), (б,в), (б,а), (б,г), (в,в), (в,а), (в,г), (а,а), (а,г), (г,г)}.

Заметим, что порядок не обязан обладать так называемым свойством линейности.

Пример 8.1.16. Рассмотрим на множестве А = {2,4,6,8} отношение делимости:. Задайте это отношение множеством пар. Так как в А лежат только натуральные числа, то: отношение порядка. Имеем упорядоченное множество А, :).

Такой порядок нельзя представить в виде упорядоченной четверки следующих друг за другом элементов. Можно привести графическую иллюстрацию отношения с помощью точек и стрелок: из точки х в точку у ведет стрелка тогда и только тогда, когда х:у.

Рассмотрим числа 6 и 4. Ни одно из них нс делится на другое. Говорят, что это несравнимые элементы.

Пусть на множестве А задано отношение порядка р. Элементы * и у называются сравнимыми , если выполняется хотя бы одно из двух соотношений хру или урх.

Порядок р на множестве А называется линейным , если любые два элемента множества А сравнимы. Множество, на котором определен линейный порядок, называется линейно упорядоченным (или цепью).

Пример 8.1.17. Отношение R является линейным порядком, так как Vx^yeR (х Поэтому (R,

упорядоченное множество.

Отношение делимости натуральных чисел в общем случае не является линейным порядком. Контрпример дан в примере 8.1.16.»

Отмстим, что любой линейный порядок на конечном множестве задается нумерацией его элементов. Чтобы подчеркнуть, что порядок может быть нс линейным, упорядоченное множество в общем случае иногда называют частично упорядоченным.

Свойства отношений:


1) рефлексивность;


2)симметричность;


3)транзитивность.


4)связанность.


Отношение R на множестве Х называется рефлексивным, если о каждом элементе множества Х можно сказать, что он находится в отношении R с самим собой: х Rх. Если отношение рефлексивно, то в каждой вершине графа имеется петля. И обратно, граф, каждая вершина которого содержит петлю, представляет собой граф рефлексивного отношения.


Примерами рефлексивных отношений являются и отношение «кратно» на множестве натуральных чисел (каждое число кратно самому себе), и отношение подобия треугольников (каждый треугольник подобен самому себе), и отношение «равенства» (каждое число равно самому себе) и др.


Существуют отношения, не обладающие свойством рефлексивности, например, отношение перпендикулярности отрезков: ab, ba (нет ни одного отрезка, о котором можно сказать, что он перпендикулярен самому себе). Поэтому на графе данного отношения нет ни одной петли.


Не обладает свойством рефлексивности и отношение «длиннее» для отрезков, «больше на 2» для натуральных чисел и др.


Отношение R на множестве Х называется антирефлексивным , если для любого элемента из множества Х всегда ложно х Rх: .


Существуют отношения, не являющиеся ни рефлексивными, ни антирефлексивными. Примером такого отношения может служить отношение «точка х симметрична точке у относительно прямой l », заданное на множестве точек плоскости. Действительно, все точки прямой l симметричны сами себе, а точки, не лежащие на прямой l, себе не симметричны.


Отношение R на множестве Х называется симметричным , если выполняется условие: из того, что элемент х находится в отношении с элементом y , следует, что и элемент y находится в отношении R с элементом х: xRyyRx .


Граф симметричного отношения обладает следующей особенностью: вместе с каждой стрелкой, идущей от х к y , граф содержит стрелку, идущую от y к х (рис. 35).


Примерами симметричных отношений могут быть следующие: отношение «параллельности» отрезков, отношение «перпендикулярности» отрезков, отношение «равенства» отрезков, отношение подобия треугольников, отношение «равенства» дробей и др.


Существуют отношения, которые не обладают свойством симметричности.


Действительно, если отрезок х длиннее отрезка у , то отрезок у не может быть длиннее отрезка х . Граф этого отношения обладает особенностью: стрелка, соединяющая вершины, направлена только в одну сторону.


Отношение R называют антисимметричным , если для любых элементов х и y из истинности xRy следует ложность yRx: : xRyyRx.


Кроме отношения «длиннее» на множестве отрезков существуют и другие антисимметричные отношения. Например, отношение «больше» для чисел (если х больше у , то у не может быть больше х ), отношение «больше на» и др.


Существуют отношения, которые не обладают ни свойством симметричности, ни свойством антисимметричности.


Отношение R на множестве Х называют транзитивным, если из того, что элемент х находится в отношении R с элементом y, а элемент y находится в отношении R с элементом z , следует, что элемент х находится в отношении R с элементом z : xRy и yRz xRz.


Граф транзитивного отношения с каждой парой стрелок, идущих от х к y и от y к z , содержит стрелку, идущую от х к z.


Свойством транзитивности обладает и отношение «длиннее» на множестве отрезков: если отрезок а длиннее отрезка b , отрезок b длиннее отрезка с , то отрезок а длиннее отрезка с. Отношение «равенства» на множестве отрезков также обладает свойством транзитивности: (а= b, b=с)(а=с).


Существуют отношения, которые не обладают свойством транзитивности. Таким отношением является, например, отношение перпендикулярности: если отрезок а перпендикулярен отрезку b , а отрезок b перпендикулярен отрезку с , то отрезки а и с не перпендикулярны!


Существует еще одно свойство отношений, которое называется свойством связанности, а отношение, обладающее им, называют связанным.


Отношение R на множестве Х называется связанным, если для любых элементов х и y из данного множества выполняется условие: если х и y различны, то либо х находится в отношении R с элементом y , либо элемент y находится в отношении R с элементом х . С помощью символов это можно записать так: xy xRy или yRx.


Например, свойством связанности обладает отношение «больше» для натуральных чисел: для любых различных чисел х и y можно утверждать, либо x>y , либо y>x.


На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.


Существуют отношения, которые не обладают свойством связанности. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа х и y , что ни число х не является делителем числа y , ни число y не является делителем числа х (числа 17 и 11 , 3 и 10 и т.д.).


Рассмотрим несколько примеров. На множестве Х={1, 2, 4, 8, 12} задано отношение «число х кратно числу y ». Построим граф данного отношения и сформулируем его свойства.


Про отношение равенства дробей говорят, оно является отношением эквивалентности.


Отношение R на множестве Х называется отношением эквивалентности, если оно одновременно обладает свойством рефлексивности, симметричности и транзитивности.


Примерами отношений эквивалентности могут служить: отношения равенства геометрических фигур, отношение параллельности прямых (при условии, что совпадающие прямые считаются параллельными).


В рассмотренном выше отношении «равенства дробей», множество Х разбилось на три подмножества: {; ; }, {; }, {}. Эти подмножества не пересекаются, а их объединение совпадает с множеством Х , т.е. имеем разбиение множества на классы.


Итак, если на множестве Х задано отношение эквивалентности, то оно порождает разбиение этого множества на попарно непересекающиеся подмножества - классы эквивалентности.


Так, мы установили, что отношению равенства на множестве
Х ={ ;; ; ; ; } соответствует разбиение этого множества на классы эквивалентности, каждый из которых состоит из равных между собой дробей.


Принцип разбиения множества на классы при помощи некоторого отношения эквивалентности является важным принципом математики. Почему?


Во-первых, эквивалентный - это значит равносильный, взаимозаменяемый. Поэтому элементы одного класса эквивалентности взаимозаменяемы. Так, дроби, оказавшиеся в одном классе эквивалентности {; ; }, неразличимы с точки зрения отношения равенства, и дробь может быть заменена другой, например . И эта замена не изменит результата вычислений.


Во-вторых, поскольку в классе эквивалентности оказываются элементы, неразличимые с точки зрения некоторого отношения, то считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом класса. Так, любой класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу. класса эквивалентности по одному представителю позволяет вместо всех элементов множества изучать совокупность представителей из классов эквивалентности. Например, отношение эквивалентности «иметь одинаковое число вершин», заданное на множестве многоугольников, порождает разбиение этого множества на классы треугольников, четырехугольников, пятиугольников и т.д. свойства, присущие некоторому классу, рассматриваются на одном его представителе.


В-третьих, разбиение множества на классы с помощью отношения эквивалентности используется для введения новых понятий. Например, понятие «пучок прямых» можно определить как то общее, что имеют параллельные прямые между собой.


Другим важным видом отношений являются отношения порядка. Рассмотрим задачу.На множестве Х ={3, 4, 5, 6, 7, 8, 9, 10 } задано отношение «иметь один и тот же остаток при делении на 3 ». Это отношение порождает разбиение множества Х на классы: в один попадут все числа, при делении которых на 3 получается в остатке 0 (это числа 3, 6, 9 ). Во второй - числа, при делении которых на 3 в остатке получается 1 (это числа 4, 7, 10 ). В третий попадут все числа, при делении которых на 3 в остатке получается 2 (это числа 5, 8 ). Действительно, полученные множества не пересекаются и их объединение совпадает с множеством Х . Следовательно, отношение «иметь один и тот же остаток при делении на 3 », заданное на множестве Х , является отношением эквивалентности.


Возьмем еще пример: множество учащихся класса можно упорядочить по росту или возрасту. Заметим, что это отношение обладает свойствами антисимметричности и транзитивности. Или всем известен порядок следования букв в алфавите. Его обеспечивает отношение «следует».


Отношение R на множестве Х называется отношением строгого порядка , если оно одновременно обладает свойствами антисимметричности и транзитивности. Например, отношение «х< y ».


Если же отношение обладает свойствами рефлексивности, антисимметричности и транзитивности, то такое оно будет являться отношением нестрогого порядка . Например, отношение «х y ».


Примерами отношения порядка могут служить: отношение «меньше» на множестве натуральных чисел, отношение «короче» на множестве отрезков. Если отношение порядка обладает еще и свойством связанности, то говорят, что оно является отношением линейного порядка . Например, отношение «меньше» на множестве натуральных чисел.


Множество Х называется упорядоченным, если на нем задано отношение порядка.


Например, множество Х= {2, 8, 12, 32 } можно упорядочить при помощи отношения «меньше» (рис. 41), а можно это сделать при помощи отношения «кратно» (рис. 42). Но, являясь отношением порядка, отношения «меньше» и «кратно» упорядочивают множество натуральных чисел по-разному. Отношение «меньше» позволяет сравнивать два любых числа из множества Х , а отношение «кратно» таким свойством не обладает. Так, пара чисел 8 и 12 отношением «кратно» не связана: нельзя сказать, что 8 кратно 12 либо 12 кратно 8.


Не следует думать, что все отношения делятся на отношения эквивалентности и отношения порядка. Существует огромное число отношений, не являющихся ни отношениями эквивалентности, ни отношениями порядка.

Пусть R - некоторое бинарное отношение на множестве X, а х, у, z любые его элементы. Если элемент х находится в отношении R с элементом у, то пишут xRy.

1. Отношение R на множестве X называется рефлексивным, если каждый элемент множества находится в этом отношении с самим собой.

R -рефлексивно на X <=> xRx для любого x€ X

Если отношение R рефлексивно, то в каждой вершине графа имеется петля. Например, отношения равенства и параллельности для отрезков являются рефлексивными, а отношение перпендику­лярности и «длиннее» не являются рефлексивными. Это отражают графы на рисунке 42.

2. Отношение R на множестве X называется симметричным, если из того, что элемент х находится в данном отношении с элементом у, следует, что элемент у находится в этом же отношении с элементом х.

R - симметрично на (хЯу =>у Rx)

Граф симметричного отношения содержит парные стрелки, идущие в противоположных направлениях. Отношения параллельнос­ти, перпендикулярности и равенства для отрезков обладают симмет­ричностью, а отношение «длиннее» - не является симметричным (рис. 42).

3. Отношение R на множестве X называется антисимметричным, если для различных элементов х и у из множества X из того, что элемент х находится в данном отношении с элементом у, следует, что элемент у в этом отношении с элементом х не находится.

R - антисимметрично на Х« (xRy и xy ≠ yRx)

Замечание: черта сверху обозначает отрицание высказывания.

На графе антисимметричного отношения две точки может сое­динять только одна стрелка. Примером такого отношения является отношение «длиннее» для отрезков (рис. 42). Отношения параллель­ности, перпендикулярности и равенства не являются антисиммет­ричными. Существуют отношения, не являющиеся ни симметрич­ными, ни антисимметричными, например отношение «быть братом» (рис. 40).

4. Отношение R на множестве X называется транзитивным, если из того, что элемент х находится в данном отношении с элементом у и элемент у находится в этом лее отношении с элементом z, следует, что элемент х находится в данном отношении с элементом Z

R - транзитивно на A≠ (xRy и yRz=> xRz)

На графах отношений «длиннее», параллельности и равенства на рисунке 42 можно заметить, что если стрелка идет от первого элемента ко второму и от второго к третьему, то обязательно есть стрелка, идущая от первого элемента к третьему. Эти отношения яв­ляются транзитивными. Перпендикулярность отрезков не обладает свойством транзитивности.

Существуют и другие свойства отношений между элементами одного множества, которые мы не рассматриваем.

Одно и то же отношение может обладать несколькими свойст­вами. Так, например, на множестве отрезков отношение «равно» - рефлексивно, симметрично, транзитивно; отношение «больше» - антисимметрично и транзитивно.


Если отношение на множестве X рефлексивно, симметрично и транзитивно, то оно является отношением эквивалентности на этом множестве. Такие отношения разбивают множество X на классы.

Данные отношения проявляются, например, при выполнении заданий: «Подбери полоски равные по длине и разложи по груп­пам», «Разложи мячи так, чтобы в каждой коробке были мячи одно­го цвета». Отношения эквивалентности («быть равным по длине», «быть одного цвета») определяют в данном случае разбиение мно­жеств полосок и мячей на классы.

Если отношение на множестве 1 транзитивно и антисимметрич­но, то оно называется отношением порядка на этом множестве.

Множество с заданным на нем отношением порядка называется упорядоченным множеством.

Например, выполняя задания: «Сравни полоски по ширине и разложи их от самой узкой до самой широкой», «Сравни числа и разложи числовые карточки по порядку», дети упорядочивают эле­менты множеств полосок и числовых карточек при помощи отно­шений порядка; «быть шире», «следовать за».

Вообще отношения эквивалентности и порядка играют боль­шую роль в формировании у детей правильных представлений о классификации и упорядочении множеств. Кроме того, встречается много других отношений, которые не являются ни отношениями эквивалентности, ни отношениями порядка.


6. Что такое характеристическое свойство множества?

7. В каких отношениях могут находиться множества? Дайте пояснения каждому случаю и изобразите их при помощи кругов Эйлера.

8. Дайте определение подмножества. Приведите пример множеств, одно из которых является подмножеством другого. Запишите их от­ношение при помощи символов.

9. Дайте определение равных множеств. Приведите примеры двух равных множеств. Запишите их отношение при помощи символов.

10. Дайте определение пересечения двух множеств и изобразите его при помощи кругов Эйлера для каждого частного случая.

11. Дайте определение объединения двух множеств и изобразите его при помощи кругов Эйлера для каждого частного случая.

12. Дайте определение разности двух множеств и изобразите ее при помощи кругов Эйлера для каждого частного случая.

13. Дайте определение дополнения и изобразите его при помощи кругов Эйлера.

14. Что называется разбиением множества на классы? Назовите усло­вия правильной классификации.

15. Что называется соответствием между двумя множествами? Назо­вите способы задания соответствий.

16. Какое соответствие называется взаимно однозначным?

17. Какие множества называют равномощными?

18. Какие множества называют равночисленными?

19. Назовите способы задания отношений на множестве.

20. Какое отношение на множестве называют рефлексивным?

21. Какое отношение на множестве называют симметричным?

22. Какое отношение на множестве называют антисимметричным?

23. Какое отношение на множестве называют транзитивным?

24. Дайте определение отношения эквивалентности.

25. Дайте определение отношения порядка.

26. Какое множество называют упорядоченным?

Пусть задано некоторое непустое множество А и R – некоторое подмножество декартова квадрата множества А: R A A .

Отношением R на множестве А называют подмножество множества А А (или А 2 ). Таким образом отношение есть частный случай соответствия, где область прибытия совпадает с областью отправления. Так же, как и соответствие, отношение – это упорядоченные пары, где оба элемента принадлежат одному и тому же множеству.

R  A  A = {(a, b) | aA, bA, (a, b)R}.

Тот факт, что (a , b )R можно записать так: a R b . Читается: «а находится в отношении R к b » или «между а и b имеет место отношение R». В противном случае записывают: (a , b )R или a R b .

Примером отношений на множестве чисел являются следующие: «=», «», «», «>» и т.д. На множестве сотрудников какой-либо фирмы ‑ отношение «быть начальником» или «быть подчинённым», на множестве родственников – «быть предком», «быть братом», «быть отцом» и т.д.

Рассмотренные отношения носят название бинарных (двухместных) однородных отношений и являются важнейшими в математике. Наряду с ними рассматривают также п -местные или п -арные отношения:

R  A  A … A = A n = {(a 1 , a 2 ,…a n) | a 1 , a 2 ,…a n  A}.

Поскольку отношение есть частный случай соответствия, для их задания могут быть использованы все ранее описанные способы.

Очевидно, что задавая отношение матричным способом, мы получим квадратную матрицу.

При геометрическом (графическом) изображении отношения мы получим схему, включающую:

    вершины, обозначаемые точками или кружочками, которые соответствуют элементам множества,

    и дуги (линии), соответствующие парам элементов, входящих в бинарные отношения, обозначаемые линиями со стрелками, направленными от вершины, соответствующей элементу a к вершине, соответствующей элементу b , если a R b .

Такая фигура называется ориентированным графом (или орграфом) бинарного отношения.

Задача 4.9.1 . Отношение R «быть делителем на множестве M = {1, 2, 3, 4 }» может быть задано матрицей :

перечислением: R = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), ((4,4)};

геометрически (графически) :

1. Выписать упорядоченные пары, принадлежащие следующим бинарным отношениям на множестве А = {1, 2, 3, 4, 5, 6, 7}:

    R1 = {(x, y)| x, yA; x + y = 9};

    R2 = {(x, y)| x, yA; x < y}.

2. Отношение R на множестве X = {a, b, c, d} задано матрицей

,

у которой порядок строк и столбцов соответствует порядку выписанных элементов. Перечислить упорядоченные пары, принадлежащие данному отношению. Изобразить отношение с помощью графа.

3. Отношение на множестве А = {1, 2, 3, 4} представлено графом. Необходимо:

    перечислить упорядоченные пары, принадлежащие R;

    выписать соответствующую матрицу;

    определить это отношение с помощью предикатов.

(ответ: a-b= 1).

4.10. Основные типы (свойства) бинарных отношений

Пусть задано бинарное отношение R на множестве А 2 : R  A  A = {(a , b ) | a A, b A, (a , b )R}

    Бинарное отношение R на множестве А называется рефлексивным , если для любого a А выполняется a R a , то есть (а , а )R. Главная диагональ матрицы рефлексивного отношения состоит из единиц. Граф рефлексивного отношения обязательно имеет петли у каждой вершины.

Примеры рефлексивных отношений: , =,  на множестве действительных чисел, «не быть начальником» на множестве сотрудников.

    Бинарное отношение R на множестве А называется антирефлексивным (иррефлексивным ), если для любого a А не выполняется отношение a R a , то есть (а , а )R. Главная диагональ матрицы иррефлексивного отношения состоит из нулей. Граф иррефлексивного отношения не имеет петель.

Примеры антирефлексивных отношений: <, > на множестве действительных чисел, перпендикулярность прямых на множестве прямых.

    Бинарное отношение R на множестве A называется симметричным , если для любых a , b А из a R b следует b R a , то есть если (a , b )R , то и(b , a )R . Матрица симметричного отношения симметрична относительно своей главной диагонали (σ ij = σ ji ). Граф симметричного отношения не является ориентированным (рёбра изображаются без стрелок). Каждая пара вершин здесь соединена неориентированным ребром.

Примеры симметричных отношений:  на множестве действительных чисел, «быть родственником» на множестве людей.

    Бинарное отношение R на множестве A называется:

    анти симметричным , если для любых a , b А из a R b и b R a следует, что a =b . То есть, если (a , b )R и(b , a )R , то отсюда вытекает, что a =b . Матрица антисимметричного отношения вдоль главной диагонали имеет все единицы и не имеет ни одной пары единиц, расположенных на симметричных местах по отношению к главной диагонали. Иными словами, все σ ii =1, и если σ ij =1, то обязательно σ ji =0. Граф антисимметричного отношения имеет петли у каждой вершины, а вершины соединяются только одной направленной дугой.

Примеры антисимметричных отношений: , ,  на множестве действительных чисел; ,  на множествах;

    а симметричным , если для любых a , b А из a R b следует невыполнение b R a , то есть если (a , b )R , то (b , a )R . Матрица асимметричного отношения вдоль главной диагонали имеет нули (σ ij =0) все и ни одной симметричной пары единиц (если σ ij =1, то обязательно σ ji =0). Граф асимметричного отношения не имеет петель, а вершины соединены одной направленной дугой.

Примеры асимметричных отношений: <, > на множестве действительных чисел, «быть отцом» на множестве людей.

    Бинарное отношение R на множестве A называется транзитив ным , если для любых a , b , с А из a R b и b R a следует, что и a R с . То есть если (a , b )R и(b , с )R вытекает, что (а , с )R . Матрица транзитивного отношения характеризуется тем, что если σ ij =1 и σ jm =1, то обязательно σ im =1. Граф транзитивного отношения таков, что если соединены дугами, например, первая-вторая и вторая-третья вершины, то обязательно есть дуги из первой в третью вершину.

Примеры транзитивных отношений: <, , =, >,  на множестве действительных чисел; «быть начальником» на множестве сотрудников.

    Бинарное отношение R на множестве A называется антитранзитив ным , если для любых a , b , с А из a R b и b R a следует, что не выполняется a R с . То есть если (a , b )R и(b , с )R вытекает, что (а , с )R . Матрица антитранзитивного отношения характеризуется тем, что если σ ij =1 и σ jm =1, то обязательно σ im =0. Граф антитранзитивного отношения таков, что если соединены дугами, например, первая-вторая и вторая-третья вершины, то обязательно нет дуги из первой в третью вершину.

Примеры антитранзитивных отношений : «несовпадение чётности» на множестве целых чисел; «быть непосредственным начальником» на множестве сотрудников.

Если отношение не обладает некоторым свойством, то, добавив недостающие пары, можно получить новое отношение с данным свойством. Множество таких недостающих пар называют замыканием отношения по данному свойству. Обозначают его как R * . Так можно получить рефлексивное, симметричное и транзитивное замыкание.

Задача 4.10.1. На множестве А = {1, 2, 3, 4} задано отношение R={(a ,b )| a ,b A, a +b чётное число}. Определить тип данного отношения.

Решение. Матрица данного отношения:

. Очевидно, что отношение является рефлексивным , так как вдоль главной диагонали расположены единицы. Оно симметрично : σ 13 = σ 31 , σ 24 = σ 42 . Транзитивно : (1,3)R, (3,1)R и (1,1)R; (2,4)R, (4,2)R и (2,2)R и т.д.

Задача 4.10.2. Какими свойствами на множестве А = {a , b , c , d } обладает бинарное отношение R = {(a ,b ), (b ,d ), (a ,d ), (b ,a ), (b ,c )}?

Решение . Построим матрицуданного отношения и его граф:

Отношение иррефлексивно , так как все σ ii = 0. Оно не симметрично , так как σ 23 =1, а σ 32 =0, однако σ 12 =σ 21 =1. Отношение не транзитивно , поскольку σ 12 =1, σ 23 =1 и σ 13 =0; σ 12 =1, σ 21 =1 и σ 11 =0; но при этом σ 12 =1, σ 24 =1 и σ 14 =1.

Задача 4.10.3. На множестве А = {1,2,3,4,5} задано отношение R = {(1,2), (2,3), (2,4), (4,5)}. Определить тип отношения и найти следующие замыкания для R:

    рефлексивное;

    симметричное;

    транзитивное.

Решение. Отношение иррефлексивно, поскольку нет ни одного элемента вида (а ,а ). Асимметрично, так как не содержит пар вида (a ,b ) и (b ,a ) и все диагональные элементы равны 0. Антитранзитивно, поскольку (1,2)R, (2,3)R, но (1,3)R. Аналогично (2,4)R, (4,5)R, а (2,5)R и т.д.

    рефлексивное замыкание данного отношения R * ={(1,1), (2,2), (3,3), (4,4), (5,5)};

    симметричное замыкание: R*={(2,1), (3,2), (4,2), (5,4)};

    транзитивное замыкание: R*={(1,3), (1,4), (2,5)}. Рассмотрим граф исходного отношения и полученного транзитивного.

Задачи для самостоятельного решения.

1. Задано отношение R = {(1,1), (1,2), (1,3), (3,1), (2,3)}. Определить его тип и найти замыкания по рефлексивности, симметричности и транзитивности.

2.Отношение на множестве слов русского языка определено следующим образом: а Rb тогда и только тогда, когда они имеют хоть одну общую букву. Определить тип отношения на множестве А = {корова, вагон, нить, топор}.

3. Указать примеры бинарных отношений на множестве А = {1, 2) и В = {1, 2, 3}, которые были бы:

    не рефлексивное, не симметричное, не транзитивное;

    рефлексивное, не симметричное, не транзитивное;

    симметричное, но не рефлексивное и не транзитивное;

    транзитивное, но не рефлексивное и не симметричное;

    рефлексивное, симметричное, но не транзитивное;

    рефлексивное, транзитивное, но не симметричное;

    не рефлексивное, симметричное, транзитивное;

    рефлексивное, симметричное, транзитивное.

В повседневной жизни нам постоянно приходится сталкиваться с понятием «отношения». Отношения – один из способов задания взаимосвязей между элементами множества.

Унарные (одноместные) отношения отражают наличие какого-то одного признака R у элементов множества M (например, «быть красным» на множестве шаров в урне).

Бинарные (двуместные) отношения используются для определения взаимо

связей, которыми характеризуются пары элементов во множестве M .

Например, на множестве людей могут быть заданы следующие отношения: «жить в одном городе», «x работает под руководством y », «быть сыном», «быть старше» и т.д. на множестве чисел: «число a больше числа b », «число a является делителем числа b », «числа a и b дают одинаковый остаток при делении на 3».

В прямом произведении , где A - множество студентов какого-либо вуза, B - множество изучаемых предметов, можно выделить большое подмножество упорядоченных пар (a, b) , обладающих свойством: «студент a изучает предмет b ». Построенное подмножество отражает отношение «изучает», возникающее между множествами студентов и предметов. Число примеров можно продолжить

Отношения между двумя объектами являются предметом исследования экономики, географии, биологии, физики, лингвистики, математики и других наук.

Для строгого математического описания любых связей между элементами двух множеств вводится понятие бинарного отношения.

Бинарным отношением между множествами A и B называется подмножество R прямого произведения . В том случае, когда можно просто говорить об отношении R на A .

Пример 1 . Выпишите упорядоченные пары, принадлежащие бинарным отношениям R 1 и R 2 , заданными на множествах A и : , . Подмножество R 1 состоит из пар: . Подмножество .

Область определения R на есть множество всех элементов из A таких, что для некоторых элементов имеем . Иными словами область определения R есть множество всех первых координат упорядоченных пар из R .

Множество значений отношения R на есть множество всех таких, что для некоторых . Другими словами множество значений R есть множество всех вторых координат упорядоченных пар из R .

В примере 1 для R 1 область определения: , множество значений - . Для R 2 область определения: , множество значений: .

Во многих случаях удобно использовать графическое изображение бинарного отношения. Оно осуществляется двумя способами: с помощью точек на плоскости и с помощью стрелок.

В первом случае выбирают две взаимно перпендикулярные линии в качестве горизонтальной и вертикальной осей. На горизонтальной оси откладывают элементы множества A и через каждую точку проводят вертикальную линию. На вертикальной оси откладывают элементы множества B , через каждую точку проводят горизонтальную линию. Точки пересечения горизонтальных и вертикальных линий изображают элементы прямого произведения .

Пример 5 . Пусть , .

Пусть R 1 задано на перечислением упорядоченных пар: . Бинарное отношение R 2 на множестве задано с помощью правила: упорядочена пара , если a делится на b . Тогда R 2 состоит из пар: .

Бинарные отношения, из примера 2, R 1 и R 2 изображены графически на рис. 6 и рис.7.

Рис. 6 Рис. 7

Чтобы изобразить бинарное отношение с помощью стрелок, слева изображаются точками элементы множества A , справа - множества B . Для каждой пары (a, b) , содержащейся в бинарном отношении R , проводится стрелка от a к b , . Графическое изображение бинарного отношения R 1 , приведенного в примере 6, показано на рис.8.

Рис.8

Бинарные отношения на конечных множествах могут быть заданы матрицами. Предположим, что задано бинарное отношение R между множествами A и B . , .

Строки матрицы нумеруются элементами множества A , а столбцы – элементами множества B . Ячейку матрицы, стоящую на пересечении i - ой строки и j - ого столбца принято обозначать через C ij , а заполняется она следующим образом:

Полученная матрица будет иметь размер .

Пример 6. Пусть задано множество . На множестве задайте списком и матрицей отношение R – «быть строго меньше».

Отношение R как множество содержит все пары элементов (a , b) из M такие, что .

Матрица отношения, построенная по вышеуказанным правилам, имеет следующий вид:

Свойства бинарных отношений:

1. Бинарное отношение R на множестве называетсярефлексивным , если для любого элемента a из M пара (a, a) принадлежит R , т.е. имеет место для любого a из M :

Отношения «жить в одном городе», «учиться в одном вузе», «быть не больше» являются рефлексивными.

2. Бинарное отношение называется антирефлексивным ,если оно не обладает свойством рефлексивности для любых a :

Например, «быть больше», «быть младше» - это антирефлексивные отношения .

3. Бинарное отношение R называется симметричным , если для любых элементов a и b из M из того, что пара (a, b) принадлежит R , , вытекает, что пара (b, a) принадлежит R , т.е.

Симметрична параллельность прямых, т.к. если // , то // . Симметрично отношение «быть равным» на любом множестве или «быть взаимнопростым на N».

Отношение R симметрично тогда и только тогда, когда R=R -1

4. Если для несовпадающих элементов верно отношение , но ложно , то отношение антисимметрично . Можно сказать иначе:

Антисимметричными являются отношения «быть больше», «быть делителем на N», «быть младше».

5. Бинарное отношение R называется транзитивным , если для любых трех элементов из того, что пары (a, b) и (b, c) принадлежат R , следует, что пара (a, c) принадлежит R :

Транзитивны отношения : «быть больше», «быть параллельным», «быть равным» и др.

6. Бинарное отношение R антитранзитивно , если оно не обладает свойством транзитивности.

Например, «быть перпендикулярным» на множестве прямых плоскости ( , , но неверно, что ).

Т.к. бинарное отношение может быть задано не только прямым перечислением пар, но и матрицей, то целесообразно выяснить, какими признаками характеризуется матрица отношения R , если оно: 1) рефлексивно, 2) антирефлексивно, 3)симметрично, 4) антисимметрично, 5) транзитивно.

Пусть R задано на , .R либо выполняется в обе стороны, либо не выполняется вообще. Таким образом, если в матрице стоит единица на пересечении i - ой строки и j - ого столбца, т.е. C ij =1, то она должна стоять и на пересечении j - ой строки и i - ого столбца, т.е. C ji =1, и наоборот, если C ji =1, то C ij =1. Таким образом, матрица симметричного отношения симметрична относительно главной диагонали.

4. R антисимметрично, если из и следует: . Это означает, что в соответствующей матрице ни для каких i , j не выполняется C ij = C ji =1. Таким образом, в матрице антисимметричного отношения отсутствуют единицы, симметричные относительно главной диагонали .

5. Бинарное отношение R на непустом множестве A называется транзитивным если

Вышеприведенное условие должно выполняться для любых элементов матрицы. И, наоборот, если в матрице R имеется хотя бы один элемент C ij =1, для которого данное условие не выполняется, то R не транзитивно.

error: Content is protected !!